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Abstract Direct-to-consumer (DTC) genetics services are increasingly popular, with tens of

millions of customers. Several DTC genealogy services allow users to upload genetic data to search

for relatives, identified as people with genomes that share identical by state (IBS) regions. Here, we

describe methods by which an adversary can learn database genotypes by uploading multiple

datasets. For example, an adversary who uploads approximately 900 genomes could recover at

least one allele at SNP sites across up to 82% of the genome of a median person of European

ancestries. In databases that detect IBS segments using unphased genotypes, approximately 100

falsified uploads can reveal enough genetic information to allow genome-wide genetic imputation.

We provide a proof-of-concept demonstration in the GEDmatch database, and we suggest

countermeasures that will prevent the exploits we describe.

Introduction
As genotyping costs have fallen over the last decade, direct-to-consumer (DTC) genetic testing

(Hogarth et al., 2008; Hogarth and Saukko, 2017; Khan and Mittelman, 2018) has become a major

industry, with over 26 million people enrolled in the databases of the five largest companies (Rega-

lado, 2019). One of the major applications of DTC genetics is genetic genealogy. Customers of com-

panies such as 23andMe and Ancestry, once they are genotyped, can view a list of other customers

who are likely to be genetic relatives. These putative relatives’ full names are often given, and some-

times contact details are given as well. Such genealogical matching services are of interest to people

who want to find distant genetic relatives to extend their family tree, and can be particularly useful to

people who otherwise may not have information about their genetic relatives, such as adoptees or the

biological children of sperm donors. Several genetic genealogy services—including GEDmatch,

MyHeritage, FamilyTreeDNA, and LivingDNA (Table 1)—allow users to upload their own genetic data

if they have been genotyped by another company. These entities generally offer some subset of their

services at no charge to uploaders, which helps to grow their databases. Upload services have also

been used by law enforcement, with the goal of identifying relatives of the source of a crime-scene

sample (Erlich et al., 2018; Edge and Coop, 2019), prompting discussion about genetic privacy

(Syndercombe Court, 2018; Ram et al., 2018; Kennett, 2019; Scudder et al., 2019).

The genetic signal used to identify likely genealogical relatives is identity by descent (IBD,

[Browning and Browning, 2012; Thompson, 2013]. We use ’IBD’ to indicate both ’identity by

descent’ and ’identical by descent’, depending on context). Pairs of people who share an ancestor in

the recent past can share segments of genetic material from that ancestor. The distribution of IBD

sharing as a function of genealogical relatedness is well studied (Donnelly, 1983; Huff et al., 2011;

Browning and Browning, 2012; Thompson, 2013; Buffalo et al., 2016; Conomos et al., 2016;

Ramstetter et al., 2018), and DTC genetics entities can use information about the number and

length of inferred IBD segments between a pair of people to estimate their likely genealogical

Edge and Coop. eLife 2020;9:e51810. DOI: https://doi.org/10.7554/eLife.51810 1 of 25

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.51810
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


relationship (Staples et al., 2016; Ramstetter et al., 2017). These shared segments—IBD seg-

ments—result in the sharing of a near-identical stretch of chromosome (a shared haplotype). Shared

haplotypes can most easily be identified looking for long genomic regions where two people share

at least one allele at nearly every locus.

For the rest of the main text, we focus on identical-by-state (IBS) segments, which are genomic

runs of (near) identical sequence shared among individuals and can be thought of as a superset of

true IBD segments. Very long IBS segments, say over 7 centiMorgans (cM), are likely to be IBD, but

shorter IBS segments, say <4 cM, may or may not represent true IBD due to recent sharing—they

may instead represent a mosaic of shared ancestry deeper in the past. Many of the algorithms for

IBD detection that scale well to large datasets rely principally on detection of long IBS segments, at

least as their first step (Gusev et al., 2009; Henn et al., 2012; Huang et al., 2014). We consider the

effect on our results of attempting to distinguish IBS and IBD in supplementary material.

Many DTC genetics companies, in addition to sharing a list of putative genealogical relatives,

give customers information about their shared IBS with each putative relative, possibly including the

number, lengths, and locations of shared genetic segments (Table 1). This IBS report may represent

substantial information about one’s putative relatives—one already has access to one’s own geno-

type, and so knowing the locations of IBS sharing with putative relatives reveals information about

those relatives’ genotypes in those locations (He et al., 2014). Users of genetic genealogy services

implicitly or explicitly agree to this kind of genetic information sharing, in which large amounts of

genetic information are shared with close biological relatives and small amounts of information are

shared with distant relatives.

Here, we consider methods by which it may be possible to compromise the genetic privacy of

users of genetic genealogy databases. In particular, we show that for services where genotype data

can be directly uploaded by users, many users may be at risk of sharing a substantial proportion of

their genome-wide genotypes with any party that is able to upload and combine information about

several genotypes. We consider two major tools that might be used by an adversary to reveal geno-

types in a genetic genealogy database. One tool available to the adversary is to upload real geno-

type data or segments of real genotype data. When uploading real genotypes, the information

gained comes by virtue of observed sharing between the uploaded genotypes and genotypes in the

database (an issue also raised by Larkin, 2017). Publicly available genotypes from the 1000Genomes

Project (Abecasis et al., 2012), Human Genome Diversity Project (Cann et al., 2002), OpenSNP

project (Greshake et al., 2014), or similar initiatives might be uploaded.

A second tool available to the adversary is to upload artificial genetic datasets (Ney et al., 2018).

In particular, we consider the use of artificial genetic datasets that are tailored to trick algorithms

that use a simple, scalable method for IBS detection, that of identifying long segments in which a

pair of genomes contains no incompatible homozygous sites (Henn et al., 2012; Huang et al.,

2014). Such artificial datasets can be designed to reveal the genotypes of users at single sites of

interest or sufficiently widely spaced sites genome-wide. We describe how a set of a few hundred

Table 1. Key parameters for several genetic genealogy services that allow user uploads as of July 26th, 2019.

Service
Database
size (millions) Individuals shown IBS/IBD Segments Reported

GEDmatch 1.2 3000 closest matches shown free; Unlimited w/ $10/month license;
any two kits can be searched against each other

Yes if longer than user-set threshold. Min.
threshold 0.1 cM, default 7 cM

FamilyTreeDNA 1* All that share at least one 9 cM block or one 7.69 cM block and 20
total cM

Yes, down to 1 cM, for $19 per kit

MyHeritage 3 All that share at least one 8 cM block Yes, down to 6 cM, for $29 per kit or unlimited for
$129/year. Customers may opt out

LivingDNA Unknown Putative relatives out to about 4th-cousin range Only sum length of matching segments reported

DNA.LAND** 0.159 Top 50 matches shown with minimum 3 cM segment Yes

*Although Regalado (2019) reports that FamilyTreeDNA has two million users, he also suggests that only about half of these are genotyped at genome-

wide autosomal SNPs, which is in line with other estimates (Larkin, 2018).

**DNA.LAND has discontinued genealogical matching for uploaded samples as of July 26th, 2019.
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artificial datasets could be designed to reveal enough genotype information to allow accurate impu-

tation of common genotypes for every user in the database.

Below, we describe these procedures and illustrate them using either publicly available or artificial

data. We show that under some circumstances, many users could be at risk of having their geno-

types revealed, either at key positions or at many sites genome-wide. In particular, we show that

GEDmatch, as of mid-December 2019, was vulnerable to an attack we term IBS baiting that obtains

genotype data via artificial data uploads. Our results are largely complementary to the independent

work of Ney et al. (2020), which was first posted publicly within a week of the first public posting of

this manuscript on bioRxiv. In the discussion, we consider our work in light of other genetic privacy

concerns (Erlich and Narayanan, 2014; Naveed et al., 2015 and the work of Ney et al., 2020), and

we give some suggested practices that DTC genetics services can adopt to prevent privacy breaches

by the techniques described here.

Results
We describe three general methods for revealing the genotypes of users in genetic genealogy data-

bases that allow uploads. The first, IBS tiling, involves uploading many real genotypes in order to

identify genotype information from many regions in many people. The second, IBS probing, involves

uploading a dataset containing a long haplotype that includes an allele of interest, creating matches

at this locus. Genotypes at other places in the genome are chosen to be unlikely to generate IBS

with any user in the database, so matches with the uploaded dataset are likely to be users who carry

the allele of interest. The third method, IBS baiting, involves uploading fake datasets with long runs

of heterozygosity to induce phase-unaware methods for IBS calling to reveal genotypes.

IBS tiling
In IBS tiling, the genotype information shared between a target user in the database and each member

of a set of comparison genomes is aggregated into potentially substantial information about the tar-

get’s genotypes. For example, consider a user of European ancestries. She is likely to have some

degree of IBS sharing with a large set of people from across Europe (Ralph and Coop, 2013) and

beyond. If one knows the user’s IBS sharing locations with one random person of European ancestries

(and the random person’s genotype), then one can learn a little about the user’s genotype. But if one

can upload many people’s genotypes for comparison, then one can uncover small proportions of the

target user’s genotypes from many of the comparison genotypes, eventually uncovering much of the

target user’s genome by virtue of a ‘tiling’ of shared IBS with known genotypes (Figure 1A). Similar

ideas have been suggested with application to IBD-based genotype imputation (Carmi et al., 2014).

We consider the amount of IBS tiling possible within a set of publicly available genotypes for 872

people of European origin genotyped at 544,139 sites. We phased the sample using Beagle 5.0

(Browning and Browning, 2007) and used Refined IBD software (Browning and Browning, 2013)

to identify IBS segments (see Materials and methods). In the main text, we include IBS segments

that are not particularly likely to be IBD—these are IBS segments returned by Refined IBD with rela-

tively low LOD scores for IBD, between 1 and 3. True IBD segments reveal more than mere IBS seg-

ments about shared genotypes because untyped variants (including rare variants) within an IBD

segment are likely to be shared. At the same time, mere IBS is sufficient to infer sharing for SNPs

that are genotyped within the segment.

Figure 2 shows the median amount of coverage obtainable by IBS tiling as a function of compari-

son sample size, imposing various restrictions on the minimum segment length in cM. (For similar

results, see Figure 2b of Carmi et al., 2014 and Figure 2 of Panoutsopoulou et al., 2014) Approxi-

mately 2.8 Giga base-pairs (Gbp) were covered by IBS segments anywhere in the genome; we take

this to be approximately the maximum possible genomic length recoverable by IBS with our SNP

set. Using the entire sample (871 genotypes, since the target is left out) and including all called IBS

segments >1 cM, the median person has an average of 60% of the maximum length of 2.8 Gbp cov-

ered by IBS segments (with the average taken across their two chromosomes), and sites across 82%

of this length have at least one of two alleles recoverable by IBS tiling. Increasing the cM threshold

required for reporting substantially reduces the amount of IBS tiling. With a cutoff of 3 cM, approxi-

mately 6.9% of the median person’s genotype information is recoverable, including at least one of

two alleles at sites in 11% of the genome. When a more stringent cutoff of 8 cM is used, only 1% of
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the genome has at least one of two alleles recoverable for the median person when using a compari-

son sample of 871. Our reports for segments longer than 3 cM may be conservative because Refined

IBD sometimes splits long IBS segments into multiple shorter segments in the presence of phasing

errors (Browning and Browning, 2013; Bjelland et al., 2017).

For some people, the amount of information obtainable by IBS tiling is even larger. In our sample,

the top 10% of people have genotypes across 76% of their total genome covered by IBS tiles,

including one or more alleles at sites in at least 93% of the 2.8 Gbp covered by IBS tiles anywhere. If

only segments longer than 3 cM are reported, the top 10% of people have one or both alleles cov-

ered at sites in at least 38% of the total, and if only segments longer than 8 cM are reported, the

top 10% have one or both alleles covered at sites in at least 6% of the total.

The coverage obtained by IBS tiling and its informativeness about target genotypes depends on

the specific practices used for reporting IBS information (Figure 2—figure supplements 1–5). For

example, DTC genealogy services may take additional steps to ensure that any short segments

reported are likely to be IBD, not merely IBS. Such steps will tend to decrease the amount of IBS tiling

possible, particularly for short segments (Figure 2—figure supplement 1). As another example, some

DTC genealogy services only report matching segments for pairs of people who share at least one

long IBS segment (Table 1), but then allow users to see shorter IBS segments (>1cM) for those pairs of

Target

(unknown)

Uploads

(known)

Probe

(known)

Targets

(unknown)

Allele of interest

IBS-inert genotypes

A

B

Figure 1. Schematics of the IBS tiling and IBS probing procedures. (A) In IBS tiling, multiple genotypes are

uploaded (green lines) and the positions at which they are IBS with the target (represented by blue lines) are

recorded. Once enough datasets have been uploaded, the target will eventually have a considerable proportion

of their genome ’tiled’ by IBS with uploads that have known genotypes. (B) In IBS probing, the uploaded probe

consists of a haplotype carrying an allele of interest (red dot) surrounded by ’IBS-inert’ segments (purple dashed

lines)—fake genotype data designed to be unlikely to share any IBS regions with anyone in the database. In the

event of an IBS match in the database, the matching database entry is likely to carry the allele of interest.
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Figure 2. Lengths of genome in Giga base-pairs (Gbp) covered by IBS tiling as a function of minimum required length of IBS segments in centiMorgans

(cM) and size of a randomly selected comparison sample for the median person in our dataset. The top-left panel shows the average coverage across

each of the person’s two haplotypes. The top-right shows IBS2 coverage, the length of genome where both haplotypes are covered by IBS tiles. The

bottom-left panel shows IBS1, the length of genome where exactly one haplotype is covered by IBS tiles. (IBS1 coverage can decrease at larger

comparison sample sizes because IBS2 coverage increases). The bottom-right panel shows IBS1+ coverage, the length of genome covered by either

IBS1 or IBS2.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. IBS tiling performance.

Figure supplement 1. Tiling performance with IBS segments that are unlikely to be IBD filtered out.

Figure supplement 1—source data 1. Tiling performance with IBS segments that are unlikely to be IBD filtered out.

Figure supplement 2. IBS tiling performance, limiting to comparison samples who share at least 1 IBS segment of 8 cM or more with the target.

Figure supplement 2—source data 1. IBS tiling performance, limiting to comparison samples who share at least 1 IBS segment of8cMor more with the

target.

Figure supplement 3. IBS tiling performance when genotype phasing switches are disallowed.

Figure supplement 3—source data 1. IBS tiling performance when genotype phasing switches are disallowed.

Figure supplement 4. IBS tiling performance in selected populations.

Figure supplement 4—source data 1. IBS tiling performance in selected populations.

Figure supplement 5. IBS tiling performance in terms of number of total alleles covered (left panel) and number of minor alleles covered (right panel,

18.6% of total alleles were minor alleles).

Figure supplement 5—source data 1. IBS tiling performance in terms of number of total alleles covered (left panel) and number of minor alleles

covered.
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people. Unsurprisingly, we find that this strategy allows a higher level of IBS tiling than if only long seg-

ments are revealed (Figure 2—figure supplement 2), because people who share a long IBS segment

may also share shorter segments that are hidden if only long segments are reported.

In this demonstration of IBS tiling, we used haplotype information provided by the Refined IBD

software to determine which haplotypes were covered by IBS in each person. Most genetic geneal-

ogy services that provide information on the location of IBS matches with putative relatives do not

provide haplotype information, making it difficult to distinguish IBS1 (in which one chromosome is

covered by an IBS segment) and IBS2 (in which both chromosomes are covered by IBS segments).

One tool available to an adversary pursuing IBS tiling is to upload genotype information that is

homozygous at all sites using one of two phased haplotypes as a basis, effectively searching for IBS

with one chromosome at a time. In the presence of phasing errors, some IBS segments may be

missed, and the assumption that phase is known would render the coverage rates in Figure 2 over-

estimates. At the same time, the decrease in tiling performance is small for short segments, which

can be seen by conducting our test of IBS tiling using Germline software with the haploid flag, which

causes putative IBS segments to terminate with a single phasing error (Figure 2—figure supplement

3). It may remain difficult to distinguish some cases—such as distinguishing IBS1 from IBS2 with a

run of homozygosity on the database genotype—but there will be no question about which

uploaded haplotype is IBS with the database genotype. Thus, at any point where a homozygous

upload and a target are IBS, at least one of the target’s alleles is known. Further, if the target is IBS

with any other uploaded datasets at a genetic locus of interest, it will often be possible to infer the

target’s full genotype.

IBS tiling rates vary somewhat by population, with Finnish samples showing the highest tiling

rates among the 1000Genomes populations included (Figure 2—figure supplement 4). There also

appear to be slight biases for IBS tiles to appear in regions with low SNP density and lower heterozy-

gosity, meaning that the proportion of alleles—and particularly the proportion of minor alleles—

recovered by tiling is typically slightly lower than the proportion of the genome length in Mbp cov-

ered (Figure 2—figure supplement 5).

IBS probing
IBS probing is an application of the same idea underlying IBS tiling. By IBS probing, one could iden-

tify people with specific genotypes of interest, such as risk alleles for Alzheimer’s disease

(Corder et al., 1993), even if the DTC service does not report chromosomal locations of IBS

matches. To identify people carrying a particular allele at a locus of interest, one could use haplo-

types carrying the allele in publicly available databases. To do so, one would extract a haplotype

that surrounds the allele of interest and place it into a false genetic dataset designed to have no

long IBS segments with any real genomes (Figure 1B). Thus, any returned putative relatives must

match at the allele of interest, revealing that they carry the allele. We call this attack ‘IBS probing’ by

analogy with hybridization probes, as the genuine haplotype around the allele of interest acts as a

probe. Whereas IBS tiling recovers genetic information from across the genome, IBS probing acts

only on a single locus of interest. The advantage is that IBS probing is possible even in databases

that do not report the chromosomal locations of IBS segments.

There are several ways of generating chromosomes unlikely to have long shared segments with

any entries in the database. One simple way is to sample alleles at each locus in proportion to their

frequencies. Chromosomes generated in this way are free of linkage disequilibrium (LD) and thus

unlike genuine chromosomes. If the database distinguishes between IBS and IBD, then these fake

data are unlikely to register as IBD with any genuine haplotypes. However, they may appear as IBS

in segments where genetic diversity is low, depending on the length threshold used by the data-

base. Near-zero rates of IBS can be obtained by generating more unusual-looking fake data, such as

by sampling alleles from one minus their frequency or by generating a dataset of all minor alleles.

Figure 3 shows a demonstration of IBS probing performance in our set of 872 Europeans in a

window around the APOE locus. For a 1-cM threshold for reporting IBS, we generated probes by

retaining 1.9 cM of real data around a site of interest in the APOE locus from all 872 people. Outside

that 1.9-cM window, we generated data by drawing alleles randomly (see Materials and methods).

For a 3-cM threshold for reporting IBS, we generated probes by retaining 5.9 cM of real data around

the site of interest. With 1-cM matching, 1497 of 1744 haplotypes (86%) matched one of the probes

at the site of interest. (Target haplotypes were not allowed to match probes constructed from the
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same person that carried the target haplotype). With 3-cM matching, 164 of 1744 haplotypes (9.4%)

matched one of the probes at the site of interest. Very few matches occurred outside the region of

interest—none with a 3-cM threshold and only 0.1% of matches with a 1-cM threshold. Moreover,

we generated different inert genotypes for all 872 probes, and the great majority of these had no

matches with any real sample. An adversary would only need to generate one inert dataset, which

can be tested by uploading to the database and confirming that no matches are returned. Probes

could then be constructed by stitching real haplotypes at the site of interest into the the same set of

inert data. The probes would then be likely to match each other, but the adversary would know

those identities and could ignore those matches.

The efficacy of IBS probing will depend on the minimum IBS-match length reported to users, the

specific methods used for identifying IBS segments (Figure 3—figure supplements 1–2), and

whether the genotype of interest is included on the SNP chip. These factors vary in terms of whether

they affect the sensitivity of IBS probing—the proportion of people carrying the allele of interest

returned by a probe or set of probes—or the precision of IBS probing—the proportion of people

returned by a probe who in fact carry the genotype of interest. For example, high thresholds for IBS

reporting will mean that uploaded genotypes will need to have long IBS segments with targets at

the locus of interest. Long IBS segments are likely to represent relatively close genealogical relatives

(i.e. long IBS segments are likely to be IBD segments), and not many targets will be close relatives of

the source of any given haplotype of interest, meaning that the sensitivity of IBS probing is reduced

by reporting thresholds that require long IBS segments. If the locus of interest or a highly correlated

one is not included on the chip used to genotype either the uploaded sample or the target sample,

then probing may only expected to work well if the upload and the target are truly IBD rather than

merely IBS, reducing the precision of IBS probing for variants that are not genotyped. Limiting
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Figure 3. A demonstration of the IBS probing method around position 45411941 on chromosome 19 (GRCh37

coordinates), in the APOE locus. We show the proportion of haplotypes among the 872 Europeans in our sample

covered IBS by probes constructed from the sample, as a function of the chromosomal location in a 10-Mb region

around the site of interest. In red, we show the coverage using a 1-cM threshold for reporting IBS, where the

probes are constructed using real data in a 1.9-cM region centered on the site of interest (region boundaries

shown in dashed orange). In orange, we show the coverage using a 3-cM threshold for reporting IBS, where the

probes are constructed using real data in a 5.9-cM region around the site of interest.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. IBS probing with including only segments with LOD>3.

Figure supplement 2. IBS probing using Germline (Gusev et al., 2009) in haploid mode.
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probing results to likely IBD matches will decrease the number of matches returned, particularly for

short cM thresholds (Figure 3—figure supplement 1).

Another factor that will affect the success of IBS probing is the frequency of the allele of interest.

For example, if the allele of interest is very rare, then it is likely to be only somewhat enriched on the

haplotypes that tend to carry it, and reported matches may not actually carry the allele, even if they

are IBD with an uploaded haplotype that carries it. IBS probing will perhaps be most sensitive and

precise when the allele of interest is both common and relatively young, as is the case for founder

mutations. In this case, most carriers of the allele will share the same long haplotype around the site

of interest, meaning that fewer probes would need to be uploaded in order to learn the identities of

the majority of the carriers in the database.

IBS baiting
IBS tiling and IBS probing take advantage of publicly available genotype data. The idea of both is that

an adversary uploads genuine genetic datasets—or, in the case of IBS probing, datasets with genuine

segments—to learn about entries in the database that share segments with the uploaded genomes.

In this section, we describe an exploit called IBS baiting. The specific strategy for IBS baiting that

we describe is possible if the database identifies putative IBS segments by searching for long regions

where a pair of people has no incompatible homozygous sites. An incompatible homozygous site is

a site at which one person in the pair is homozygous for one allele, and the other person is homozy-

gous for the other allele. Identifying IBS segments in this way does not require phased genotypes

and scales relatively easily to large datasets—we refer to methods in this class as ’phase-unaware’

and contrast them with phase-aware methods for IBS detection. Phase-unaware methods are robust

to phasing errors, which are an issue for long IBD segments (Durand et al., 2014). Major DTC genet-

ics companies have used phase-unaware methods in the past for IBS detection (Henn et al., 2012;

Hon et al., 2013), and some state-of-the-art IBD detection and phasing pipelines feature an initial

phase-unaware step (Huang et al., 2014; Loh et al., 2016).

The main tool used in IBS baiting is the construction of apparently IBS segments by assigning

every uploaded site in the region to be heterozygous. (SNPs with missing data may also be included

in these regions). These runs of heterozygosity, which are unlikely to occur naturally (unlike runs of

homozygosity, [McQuillan et al., 2008; Pemberton et al., 2012]), will be identified as IBS with every

genome in the database using phase-unaware methods: because they contain no homozygous sites

at all, they cannot contain homozygous sites incompatible with any person in the database.

Here, we consider a database in which an apparent IBS segment is halted exactly at the places at

which the first incompatible homozygous site occurs on each side of the segment. We also assume

that the database detects all segments without incompatible homozygous sites that pass the

required length threshold. Ney et al. (2020) independently proposed a similar approach in their sec-

tion VII ‘Genetic Marker Extraction Using Matching Segments,’ showing that GEDmatch was vulnera-

ble to it. Similarly, we demonstrate below that IBS baiting can be implemented against GEDmatch.

Single-site IBS baiting
The simplest application of IBS baiting is to use it to reveal genotypes at a single site. If IBS is identi-

fied by looking for single incompatible homozygous sites and missing data can be ignored, then

users’ genotypes at any single biallelic site of interest can be determined by examining their putative

IBS with each of two artificial datasets (Figure 4A). In each artificial dataset, the site of interest is

flanked by a run of heterozygosity. The combined length of these two runs of heterozygosity must

exceed the minimum length of IBS segment reported by the database. The adversary uploads two

datasets with these runs of heterozygosity in place. In one dataset, the site of interest is homozygous

for the major allele, and in the other, the site of interest is homozygous for the minor allele. If the

target user is homozygous at the site of interest, then one of these two uploads will not show a sin-

gle, uninterrupted IBS segment—IBS will be interrupted at the site of interest (or may not be called

at all). If the IBS segment with the dataset homozygous for the major allele is interrupted, then the

target user is homozygous for the minor allele. Similarly, if the IBS segment with the dataset homozy-

gous for the minor allele is interrupted, then the target user is homozygous for the major allele. If

both uploads show uninterrupted IBS segments with the target, then the target user is heterozygous

at the site of interest. Thus, for any genotyped biallelic site of interest, the genotypes of every user
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shown as a match can be revealed after uploading two artificial datasets. Depending on how possi-

ble matches are made accessible to the adversary, the genotypes of every user could be returned.

Genotypes of medical interest that are often included in SNP chips, such as those in the APOE locus

(Corder et al., 1993), are potentially vulnerable to single-site IBS baiting.

Here, we have considered a database using the simplest possible version of a phase-unaware

method for detecting IBS, that in which an apparent IBS segment is halted exactly at the places at

which the first incompatible homozygous site occurs on each side of the segment. In principle,

phase-unaware IBS-detection algorithms can be altered to allow for occasional incompatible homo-

zygous sites before halting as an allowance for genotyping error, or the extent of the reported

region might be modified to be less than the full range between incompatible homozygous sites.

Versions of IBS baiting might be developed to work within such modifications. The key insight is that

if two artificial kits differ at exactly one site in a region and they produce two different patterns of

called IBS with a target, then the target’s genotype is revealed at that site. For example, if a data-

base uses a phase-unaware method for IBS calling that requires two incompatible homozygous sites

before a putative IBS segment is halted, then an attacker might modify our scheme by putting in a

rare homozygote at a site near the key site. For most target users, the rare homozygote in the

uploaded files would be an incompatible homozygous site, implying that a mismatch at the key site

will cause a break in a putative IBS region. By using different homozygote genotypes nearby, an

attacker might still identify the genotypes of everyone in the database at the key site. As discussed

below, such measures do not appear to be necessary to perform IBS baiting in GEDmatch. Further,

in GEDmatch, uploading a third bait dataset with a missing genotype at the key site can distinguish

targets with missing genotypes from heterozygous targets.

Upload 1

Upload 2

Break w/ U1

Break w/ U2

No breaks
Target 

genotypes

Target

Upload 1

Upload 2

A

B

Figure 4. Schematics of the IBS baiting procedure. (A) To perform IBS baiting at a single site, two uploads are

required, each with runs of heterozygous genotypes flanking the key site. At the key site, the two uploaded

datasets are homozygous for different alleles. The three possible target genotypes at the key site can each be

determined by examining their IBS coverage with the uploads. If there is a break in IBS with either upload, then

the target is homozygous for the allele not carried by the upload that shows the break in IBS (with the broken IBS

segment shown as a cyan line). If there is no break in IBS with either upload, then the target is heterozygous at the

key site. (B) Target genotypes at many key sites across the genome can be learned by comparison with two

uploaded datasets, as long as key sites are spaced widely enough.
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Single-site IBS baiting could also be used if chromosomal locations of matches are not reported.

To do so, one would use the the scheme we describe in a large region surrounding the locus of

interest and use fake IBS-inert segments to fill in the rest of the dataset.

Parallel IBS baiting
The second method we consider applies the IBS baiting technique to many sites in parallel

(Figure 4B). By parallel application of IBS baiting, users’ genotypes at hundreds or thousands of sites

across the genome can be identified by comparison with each pair of artificial genotypes. By

repeated parallel IBS baiting, eventually enough genotypes can be learned that genotype imputa-

tion becomes accurate, and genome-wide genotypes could in principle be imputed for every user in

the database. If IBS segments as short as 1 cM are reported to the user, then accurate imputation

(97–98% accuracy) becomes possible after comparison with only about 100 uploaded datasets. The

procedure starts by designing a single pair of uploaded files as follows:

1. Identify a set of key sites to be revealed by the IBS baiting procedure. For every key site, the
sum of the distances in cM to the nearest neighboring key site on each side (or the end of the
chromosome, if there is no flanking key site on one side) must be at least the minimum IBS
length reported by the database.

2. Produce two artificial genetic datasets. In each, every non-key site is heterozygous. In one,
each key site is homozygous for the major allele, in the other, each key site is homozygous for
the minor allele.

3. Upload each artificial dataset and compare them to a target user. Key sites that are covered
by putative IBS segments between the target and both artificial datasets are heterozygous in
the target. The target is homozygous for the major allele at key sites that are covered by puta-
tive IBS segments between the target and the major-allele-homozygous dataset only. Similarly,
the target is homozygous for the minor allele at key sites that are covered by putative IBS seg-
ments between the target and the minor-allele-homozygous dataset only.

Carrying out this procedure reveals the target’s genotype at every key site. If IBS segments of

length at least t cM are reported, and a chromosome is c cM long, then up to 2c=t � 1 key sites can

be revealed with each pair of uploaded files. (To see this, consider the case where c ¼ tk, with k a

positive integer, and place key sites at t=2; t; 3t=2; :::; c� t=2. This calculation ignores the possibility of

missing data at key sites in the target). This means that with a minimum reported IBS threshold of 1

cM, 100 uploaded datasets could reveal approximately 100 genotypes per cM, which is enough to

impute genome-wide genotypes at 97 - 98% accuracy (Shi et al., 2018). In principle, the key sites

could also be chosen to ensure good LD coverage and higher imputation accuracy. Of course,

higher accuracy imputation can be obtained by recovering exact genotypes for more sites, and with

several thousand uploads, the genotypes at every genotyped site could be revealed by IBS baiting

without the need to impute.

IBS baiting in GEDmatch
We hypothesized that IBS baiting would work in the GEDmatch DTC database. GEDmatch provides

no public documentation of the IBS algorithm they use, but IBS segments identified by GEDMatch

seem to terminate only on incompatible homozygous sites, as would be expected if they use phase-

unaware IBS detection. Specifically, the GEDmatch 1-to-1 match tool identifies the locations of IBS

segments between pairs of genetic datasets (’kits’ in GEDMatch terminology) and allows the user to

specify the minimum genetic length and minimum number of matching SNPs to include in a seg-

ment. The 1-to-1 tool also returns a ‘full resolution’ picture of the chromosome that appears to be a

SNP-by-SNP picture of the match between the kits along each chromosome. (These pictures are

themselves a major security risk. We alerted GEDmatch to the risk in a July 24th email (posted here:

https://github.com/mdedge/IBS_privacy/blob/master/IBS_baiting_demo/GEDmatch_emails.pdf) but

did not analyze them further. Ney et al. (2020) showed in detail that the images provided by GED-

match allow an adversary to learn the full genotype of a target person).

To demonstrate IBS baiting in GEDmatch, we uploaded a small number of artificial genotypes to

their database beginning in late November 2019. These kits were designed in accordance with the

algorithm discussed above, but with some slight alterations to bypass counter-measures that GED-

Match has put in place since we (and, independently, Ney and colleagues) informed them of the risk
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of IBS baiting in summer 2019. Before uploading any data to GEDmatch, we first confirmed our

planned procedure with the UC Davis IRB and with GEDmatch representatives. We uploaded our

kits into the GEDmatch ‘research’ and not ‘public’ category to prevent matches to the public data-

base, and only used the 1-to-1 IBS match tool among our own uploaded test kits. In this way, we

avoided interacting with any genotype data of real GEDmatch users and did not violate GEDmatch’s

terms and conditions.

We targeted four random SNPs along chromosome 22 for IBS baiting. We uploaded two bait

genotype kits (B1 and B2) that had opposite-homozygote genotypes at each of these key SNPs.

Each key SNP was in turn surrounded by a ~1cM stretch of SNPs containing genotypes that were

either heterozygoous or coded missing. The rest of the genome was specified to be IBS-inert. We

then uploaded three target genotype datasets whose genotypes we wanted to determine at the key

sites. Two of these target kits (T1 and T3) had opposite-homozygous genotypes at each of the key

SNPs, while the third (T2) was heterozygous at each key SNP. (See subsection ’GEDmatch demon-

stration’ in the Materials and methods for more details on the kit design). We then used the GED-

match 1-to-1 match tool, choosing the parameters so a single opposite-homozygous genotype

between a bait and target kit would interrupt a putative IBS segment.

In each case, our two bait kits had the correct IBS patterns with the target kits, allowing correct

determination of the target genotypes by IBS baiting. On the left of Figure 5, we show a zoomed-in

view of the three targets’ matches around one of the key SNP sites. The homozygous targets have

IBS matches with only one of the bait kits, whereas the heterozygous target has IBS matches with

both bait kits. This pattern is seen across all four target regions (right side of Figure 5, see section

’GEDmatch demonstration’ of the Materials and methods for more detailed results). The target and

bait kits displayed in Figure 5 were uploaded and analyzed on December 15, 2019, showing that

GEDmatch has remained vulnerable to IBS-baiting attacks even after its acquisition by Verogen,

which was announced on December 9, 2019.

Discussion
We have suggested several methods by which an adversary might learn the genotypes of people

included in a genetic genealogy database that allows uploads. Our methods take advantage of both

the population-genetic distributions of IBS segments and of methods used for calling IBS. In particu-

lar, IBS tiling works simply because there are background levels of IBS (and IBD) even among dis-

tantly related members of a population (e.g. Ralph and Coop, 2013). In our dataset, the median

person had the majority of their genetic information susceptible to IBS tiling on the basis of other

members of the dataset, depending on the procedures used for reporting IBS. IBS tiling perfor-

mance will also depend on the ancestries of the target and comparison samples because IBD rates

differ within and among populations (Palamara et al., 2012; Carmi et al., 2013; Ralph and Coop,

2013), as well as on the prevalence of close biological relatives in the dataset. IBS tiling performance

improves as the size of the comparison sample increases. Thus, if enough genomes are compared

with a target for IBS, eventually a substantial amount of the target genome is covered by IBS with

one or more of the comparison genomes.

IBS probing combines the principles behind IBS tiling with the idea of ’IBS-inert’ artificial seg-

ments. If the majority of the genome—everywhere except a locus of interest—can be replaced with

artificial segments that will not have IBS with any genome in the database, then the adversary knows

that any matches identified are in a locus of interest. As such, IBS probing could be used to reveal

sensitive genetic information about database participants even if chromosomal locations of matches

are not reported to users.

Finally, IBS baiting exploits phase-unaware IBS calling algorithms that use incompatible homozy-

gous sites to delimit putative IBS regions. Although such methods can be useful in genetic geneal-

ogy because they scale well to large data, they are vulnerable to fake datasets that include runs of

heterozygous sites, which will be identified as IBS with everyone in the database. By inserting homo-

zygous genotypes at key sites and heterozygotes everywhere else, we estimate that approximately

100 well-designed uploads could reveal enough genotypes to impute genome-wide information for

any user in a database, provided that the threshold for reporting a matching segment is approxi-

mately 1 cM. Similarly, two uploads could reveal any genotype at a single site of interest, such as
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rs429358, which reveals whether the user carries an APOE-e4 variant and is associated with risk of

late-onset Alzheimer’s disease.

There are millions of people enrolled in genetic genealogy databases that allow uploads (Table 1).

Genetic genealogy has many applications, and uploads are popular with users who want to find rela-

tives who may be scattered across different databases. Though allowing uploads brings several ben-

efits for both customers and DTC services, it also entails additional privacy risks. Users of DTC

genetic genealogy services that allow uploads could be at risk of having their genetic information

extracted by the procedures we describe here, depending on the methods that these services use

to identify and report IBS. Concerns arising from the methods we report are in addition to standard

digital security concerns. The attacks we describe require little special expertise in computing; the

adversary only needs to be able to procure or create the appropriate data files and to process and

aggregate the information returned from the database.

We have not set out to determine precisely how vulnerable users of each specific DTC service

are. We do not know the full details of methods used by each service for matching, nor have we

attempted to deanonymize any real users’ genotypes. We contacted representatives of each of the

organizations listed in Table 1 90 days (July 24th, 2019) before posting this manuscript publicly in

order to give them time to repair any security vulnerabilities related to the methods we describe.

T1

T1−B1 IBS Match

T1−B2 No Match

T2

T2−B1 IBS Match

T2−B2 IBS Match

T3

T3−B1 No Match

T3−B2 IBS Match

T1−B1

T1−B2

T2−B1

T2−B2

T3−B1

T3−B2

No Match Half Match Full Match

Figure 5. Visualization of IBS baiting using GEDmatch’s 1-to-1 chromosome browser. Left: Zoomed-in view of the region containing key SNP 1, showing

the three target kits (T1–T3) matched to the two bait kits (B1 and B2). Right: Zoomed-out views of regions containing all four key SNPs on chromosome

22. For each pair of bait and target kits, the top rectangle (red, yellow, or green) shows the GEDmatch SNP-level pairwise genotype-match image

(colored to show no match, half match, or full match) returned by the 1-to-1 GEDmatch tool. The bottom rectangle (black and blue) shows the

GEDmatch IBD-track image, black for no putative IBD match, blue regions showing putative IBD segments. The white text on the IBS track is not

provided by GEDmatch and was added as a guide to the eye. Opposite-homozygote calls at the key SNP are seen in the left panel as a red line in an

otherwise matching region (yellow and green). The spatial positions of SNPs in the match panel appears to have been jittered; for example the location

of the red line varies slightly in the different plots that should have the same coordinate system (perhaps as a countermeasure against a Ney et al.,

2020-style attack).
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We have posted our emails to GEDmatch representatives here: https://github.com/mdedge/IBS_pri-

vacy/blob/master/IBS_baiting_demo/GEDmatch_emails.pdf.

On the basis of our results, we do have serious concerns about the privacy of GEDmatch users.

As of this writing, GEDmatch uses length thresholds for displaying matching segments that are too

short, allowing for effective IBS tiling attacks, and GEDmatch also appears to use phase-unaware

IBD detection methods, allowing for IBS baiting attacks. Additionally, as detailed by

Ney et al. (2020), whose work was independent of ours, GEDmatch provides users with high-resolu-

tion images comparing the chromosomes of any two users at SNP-level resolution, allowing for

reconstruction of a target’s genotype using these images. GEDmatch was recently purchased by

Verogen, a forensic genetics company, but as of December 15, 2019, GEDmatch has not as yet pre-

vented the attacks we describe. Since our and Ney et al. (2020)’s initial communications with GED-

match in July, GEDmatch has placed a reCAPTCHA on its upload and 1-to-1 tool forms. Though

reCAPTCHA may deter bulk bot attacks to harvest large numbers of kit genotypes, it is still possible

for a human to carry out small-scale attacks. Further, even as reCAPTCHA has improved at blocking

non-human users in recent years, new attacks have been developed to bypass reCAPTCHA

(Baecher et al., 2011; Brown et al., 2017; Zhou et al., 2018; Akrout et al., 2019). As we outline

below, there are simple steps that could be taken to make IBS attacks much less of a risk.

In our estimation, the other active services listed in Table 1 (MyHeritage, FamilyTreeDNA, and

LivingDNA) are likely substantially less vulnerable than GEDmatch to the attacks we describe here.

LivingDNA does not provide a chromosome browser, precluding IBS tiling attacks. MyHeritage and

FamilyTreeDNA use thresholds for revealing matching segment locations that make IBS tiling much

less efficient. (However, FamilyTreeDNA’s practice of showing matches as short as 1 cM given that

two people share at least one long match is still somewhat permissive, see Figure 2—figure supple-

ment 2). Representatives of MyHeritage, FamilyTreeDNA, and LivingDNA have confirmed to us that

their IBD-calling algorithms rely on phased data, which should preclude IBS baiting. (We have not

tested this ourselves). DTC genetic genealogy is a growing field, and any new entities that begin

offering upload services may also face threats of the kind we describe.

Genetic genealogy databases that allow uploads have been in the public eye recently because of

their role in long-range familial search strategies recently adopted by law enforcement. In long-

range familial search, investigators seek to identify the source of a crime-scene sample by identifying

relatives of the sample in a genetic genealogy database that allows uploads. Searching in SNP-based

genealogy databases allows the detection of much more distant relationships than does familial

searching in traditional forensic microsatellite datasets (Rohlfs et al., 2012), vastly increasing the

number of people detectable by familial search (Erlich et al., 2018; Edge and Coop, 2019). At this

writing, both GEDmatch and FamilyTreeDNA have been searched in this way. Long-range familial

search raises a range of privacy concerns (Syndercombe Court, 2018; Ram et al., 2018; Ken-

nett, 2019; Scudder et al., 2019). One response from advocates of long-range search has been to

note that ’raw genetic data are not disclosed to law enforcement. . . Search results display only the

length and chromosomal location of shared DNA blocks’ (Greytak et al., 2018). However, the meth-

ods we describe here illustrate that there are several ways to reveal users’ raw genetic data on the

basis of the locations of shared DNA blocks. Because companies that work with law enforcement on

long-range familial searching—including Parabon Nanolabs and Bode Technology (Kennett, 2019)—

now routinely upload tens of datasets to genetic genealogy databases, they may be accidentally

accumulating information that would allow them to reconstruct many people’s genotypes.

Data breaches via IBS tiling, IBS probing, and IBS baiting are preventable. We have identified a

set of strategies that genetic genealogy services could adopt to protect their genotype data from

IBS-based attacks. We give a detailed list of these strategies in Appendix A (also summarized in

Table 2). Broadly, the suggestions consist of restrictions on they types of datasets that can be

uploaded, restrictions on the kinds of information shared with users, and restrictions on classes of

methods used for identifying putative IBD segments. For example, to prevent IBS tiling, the simplest

measures are either to forgo the use of a chromosome browser feature or only to show users the

positions of long IBS segments, such as segments of at least 8 cM. To prevent IBS baiting, the most

robust countermeasure is to phase data before identifying IBS segments, allowing only relatively few

phase switches in any putative segment. Phasing the data and only reporting long segments both

decrease the uncertainty of IBD calls and so may improve user experience as well. Finally, we also

support the strategy of requiring encrypted signatures on uploaded files, proposed by Erlich et al.
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(2018), which would allow DTC databases to block any files that do not originate from trusted sour-

ces. Some of our suggestions limit the potential uses of genetic genealogy data, and users will vary

in the degree to which they value these potential uses and in the degree to which they want to pro-

tect their genetic information.

All these suggestions assume that genealogy services will maintain raw genetic data for people in

their database. Another possibility would be for individual people instead to upload an encrypted

version of their genetic data, with relative matching performed on the encrypted datasets, as has

been suggested previously (He et al., 2014).

Our IBS tiling and IBS probing results focus on users of European ancestries, in part because most

users of DTC genetic genealogy services appear to have substantial European ancestries. (DTC genet-

ics companies generally do not release this kind of information on their users, but their research papers

suggest that they have access to especially large samples with European ancestries—for example, a

23andMe paper on demography in the United States included almost 150,000 self-described Euro-

pean Americans and less than 10,000 each of self-described African Americans and Latino Americans

[Bryc et al., 2015]. For a qualitatively similar sample composition in a study from Ancestry, see

Han et al. (2017). One question is how these results would generalize to other populations. Because

IBD sharing is generally greater within populations than between populations (e.g. Ralph and Coop,

2013), potential users are more vulnerable if there are more publicly available genomes from people

with similar ancestries. If IBD-detection algorithms are not well calibrated to differences in heterozy-

gosity across populations, then spurious IBD calls will be more common in populations with lower het-

erozygosity, leading to greater risk of IBD tiling. Finally, we show in Figure 2—figure supplement 4

that in our sample, Finnish samples are more vulnerable to IBS tiling than other populations, which is

likely due to Finns tracing substantial ancestry to a founder population that experienced a bottleneck

1~00 generations ago (Kere, 2001). Members of other groups with similar demographic histories are

likely to be at elevated risk of IBS tiling and IBS probing as well.

We have focused on genetic genealogy databases that allow uploads because at this writing, it is

straightforward to download publicly available genetic datasets and to produce fake genetic data-

sets for upload. In principle, however, another way to perform attacks like the ones we describe

would be to use biological samples. For example, a group of people willing to share their genetic

data with each other could collaborate to perform IBS tiling by sending actual biological samples for

genotyping. Even IBS probing and IBS baiting could be performed with biological samples by adver-

saries who could synthesize the samples. Though synthesizing such samples is technically challenging

now, it may become easier in the future. Such methods could present opportunities to attack data-

bases that do not allow uploads, such as the large databases maintained by Ancestry (>14 million)

and 23andMe (>9 million) (Regalado, 2019). They would also thwart the countermeasure of requir-

ing uploaded datasets to include an cryptographic signature indicating their source.

The IBS-based privacy attacks we describe here add to a growing set of threats to genetic privacy

(Homer et al., 2008; Nyholt et al., 2009; Im et al., 2012; Gymrek et al., 2013; Humbert et al.,

Table 2. Potential countermeasures against the methods of attack outlined here, with their likely effectiveness against IBS tiling, IBS

probing, and IBS baiting.

Strategy Prevents IBS tiling Prevents IBS probing Prevents IBS baiting

Require cryptographic signature from genotyping service Yes Yes Yes

Restrict reporting of IBS to long segments (e.g. >8 cM) Partially Partially Weakly

Report number and lengths of IBS segments but not locations Yes No Partially

Block homozygous uploads Partially No No

Report small number of matching individuals per kit Partially Partially Partially

Disallow matching between arbitrary kits Partially Partially Partially

Block uploads of publicly available genomes Partially No No

Block uploads with evidence of IBS-inert segments No Yes No

Block uploads with long runs of heterozygosity No No Partially

Use phase-aware methods for IBS detection No No Yes
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2015; Shringarpure and Bustamante, 2015; Edge et al., 2017; Ayday and Humbert, 2017;

Kim et al., 2018; Erlich et al., 2018). A person’s genotype includes sensitive health information that

might be used for discrimination, and people whose genetic information is compromised may be

vulnerable to scams involving falsified relatives (Ney et al., 2020). Athough there are many emerg-

ing threats to privacy, some of the more unsettling of which have nothing to do with genetics,

genetic data do have special features that might require special considerations. In particular, genetic

privacy concerns not only the person whose genotypes are directly revealed but also their relatives

whose genotypes may be revealed indirectly (Humbert et al., 2013), a point highlighted by the use

of genetic genealogy for long-range forensic searches (Erlich et al., 2018; Edge and Coop, 2019).

Although many forms of genetic discrimination are prohibited legally, rules vary between coun-

tries and states. For example, in the United States, the Genetic Information Nondiscrimination Act

(GINA) protects against genetic discrimination in the provision of health insurance but does not

explicitly disallow genetic discrimination in the provision of life insurance, disability insurance, or

long-term care insurance (Bélisle-Pipon et al., 2019). In addition to measures for protecting genetic

privacy in the short term, there is a need for more complete frameworks governing the circumstan-

ces under which genetic data can be used (Clayton et al., 2019).

Materials and methods

Data assembly
We performed IBS tiling with publicly available genoytpes from 872 people of European ancestries.

Of these 872 genotypes, 503 came from the EUR subset of the 20130502 release of phase 3 of the

1000 Genomes project (Abecasis et al., 2012), downloaded from ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/release/20130502/. This release set has been pruned to remove close biological relatives.

The EUR subset includes the following population codes and numbers of people: CEU (Utah resi-

dents with Northern and Western European Ancestry, 99 people), FIN (Finnish in Finland, 99 peo-

ple), GBR (British in England and Scotland, 91 people), IBS (Iberian Population in Spain, 107 people),

TSI (Toscani in Italia, 107 people).

The remaining 369 were selected from samples typed on the Human Origins SNP array

(Patterson et al., 2012), including 142 genotypes from the Human Genome Diversity Project

(Cann et al., 2002). Specifically, we downloaded the Human Origins data from https://reich.hms.har-

vard.edu/downloadable-genotypes-present-day-and-ancient-dna-data-compiled-published-papers,

using the 1240K+HO dataset, version 37.2. The 372 selected people were all contemporary samples

chosen according to population labels. We also excluded people from the Human Origins dataset if

they appeared in the 1000 Genomes dataset. The populations used for selecting data, along with the

number of participants included after excluding 1000 Genomes samples, were as follows: ’Adygei’

(16), ’Albanian’ (6), ’Basque’ (29), ’Belarusian’ (10), ’Bulgarian’ (10), ’Croatian’ (10), ’Czech’ (10),

’English’ (0), ’Estonian’ (10), ’Finnish’ (0), ’French’ (61), ’Greek’ (20), ’Hungarian’ (20), ’Icelandic’ (12),

’Italian_North’ (20), ’Italian_South’ (4), ’Lithuanian’ (10), ’Maltese’ (8), ’Mordovian’ (10), ’Norwegian’

(11), ’Orcadian’ (13), ’Romanian’ (10), ’Russian’ (22), ’Sardinian’ (27), ’Scottish’ (0), ’Sicilian’ (11), ’Span-

ish’ (0), ’Spanish_North’ (0), and ’Ukrainian’ (9). The populations with 0 people included are those for

which all the samples in the Human Origins dataset are included in the 1000 Genomes phase 3 panel.

Samples with group labels marked ’ignore’ were excluded, including samples marked as close

relatives.

We down-sampled the sequence data from the 1000 Genomes project to include only sites typed

by the Human Origins chip. Of the 597,573 SNPs included in the Human Origins dataset, 558,257

sites appeared at the same position in the 1000 Genomes dataset, 557,999 of which appear as bial-

lelic SNPs. For 546,530 of these, both the SNP identifier and position match in 1000 Genomes, and

for 544,139 of them, the alleles agreed as well. We merged the dataset at the set of 544,139 SNPs

at which SNP identifiers, positions, and alleles matched between the Human Origins and 1000

Genomes datasets.

We used vcftools (Danecek et al., 2011), bcftools (Li, 2011), PLINK (Purcell et al., 2007), and

EIGENSOFT (Price et al., 2006) to create the merged file. The script used to create it is maintained

at github.com/mdedge/IBS_privacy/, and the merged data file is available at https://doi.org/10.
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25338/B8X619. A permanent version of the scripts used in the publication version of this paper is

available with doi 10.5281/zenodo.3620958.

Phasing, IBS calling, and IBS tiling
We phased the combined dataset using Beagle 5.0 (Browning and Browning, 2007) using the

default settings and genetic maps for each chromosome. We used linear interpolation to obtain the

genetic map position of each SNP on the build GRCh37 LDhat genetic map (Frazer et al., 2007)

downloaded from the Beagle website (http://bochet.gcc.biostat.washington.edu/beagle/genetic_

maps/). We used Refined IBD software (Browning and Browning, 2013) to identify IBS segments,

retaining segments of at least .1 centiMorgans (cM) with LOD scores >1. We also used Germline

(Gusev et al., 2009) to identify IBS segments under alternative parameters, shown in the supple-

ment. The resulting IBS segments were analyzed using the GenomicRanges package

(Lawrence et al., 2013) in R (R Development Core Team, 2013). Scripts used for phasing, IBS call-

ing, and IBS tiling are available at github.com/mdedge/IBS_privacy/.

IBS probing
To generate IBS-inert genotypes for IBS probing in Figure 3, we computed allele frequencies within

the set of 872 Europeans for chromosome 19. Allele frequencies less than 10% were changed to 10%,

and then alleles were sampled at one minus their frequency. This strategy generates genetic data that

look quite unlike real data, with the advantage (for the purposes of IBS probing) of being unlikely to

return IBS matches anywhere. An adversary attempting IBS probing in a real database would need to

tailor the approach to the quality control and IBS calling methods used by the database.

After inert genotypes were produced, we stitched them with real phased genotypes from win-

dows around GRCh position 45411941 on chromosome 19, the site of SNP rs429358. SNP rs429358

is in the APOE locus; if a haplotype has a C at rs429358 and a C at nearby SNP rs7412, then that

haplotype is said to harbor the APO-�4 allele, which confers risk for Alzheimer’s disease

(Corder et al., 1993). rs429358 is not genotyped on the Human Origins chip, but it is included on

recent chips used by both Ancestry and 23andMe. To simulate probing with a 1 cM threshold for

matching, we pulled real data from a region of 1.9 cM around the site, and to simulate probing with

a 3 cM threshold, we pulled real data from a region of 5.9 cM around the site. Distances in cM were

computed by linear interpolation from a genetic map in GRCh37 coordinates. Scripts used to gener-

ate Figure 3 are available at github.com/mdedge/IBS_privacy/.

GEDmatch demonstration
On Novermber 21st, 2019, we first uploaded artificial genetic datasets to GEDmatch’s research mode

in order to demonstrate the possibility of IBS baiting. GEDMatch has not published details of its IBS

detection procedures. However, the options available to users in the 1-to-1 match tool and the

description of how those options can be used to ignore single-site matches led us to hypothesize that

GEDmatch uses phase-unaware IBS detection and that the 1-to-1 match tool might be vulnerable to

IBS baiting.

Description of GEDmatch 1-to-1 tool
GEDmatch’s 1-to-1 match tool allows the user to compare the IBS matches of any two genetic data-

sets (or, in GEDmatch parlance, ’kits’), as long as the kit numbers are known to the user. Thus, to

identify the genotypes of many users an adversary would need access to the kit numbers of many

users. The 1-to-many tool in default GEDmatch reports 3000 of the closest genetic relatives of any

kit whose number is known to the user, and reports the kit numbers of those match kits (along with

names and email addresses). Thus an adversary can iteratively search for all the kit numbers match-

ing a known kit, and so obtain many kit numbers to use in 1-to-1 searches. We alerted GEDmatch to

this issue with the 1-to-many tool, as nearly the entire GEDmatch database of kit numbers and

genetic relationships could be scraped.

The 1-to-1 match tool allows the user to specify parameters that govern IBS calling. In particular,

the user can specify the minimum cM length of the blocks (down to 0.1 cM) and the minimum num-

ber of SNPs in a block (down to 25 SNPs). GEDmatch also allows the user to specify the ‘mis-match

bunch limit,’ which appears to be the minimum number of IBS-compatible SNPs after an opposite-
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homozygous site that are required in order for a second opposite-homozygous site not to break the

IBS segment.

Ethics
In order to comply with GEDmatch’s terms and conditions, we used artificial datasets designed not

to match any genuine genetic data uploaded to GEDmatch. The kits were uploaded in ’Research’

mode, where they are not visible to other users via 1-to-many search. We did not interact with any

other users’ data; we ran GEDmatch’s 1-to-1 comparison tools only comparing among our artificial

kits. We exercised care not to interact with any other tools and to avoid accidental discoveries. Prior

to uploading the artificial datasets, we also consulted with the UC Davis Institutional Review

Board (IRB) to ensure that these uploads do not constitute human subjects research. Upon receiving

confirmation from the IRB that our uploads do not constitute human subjects research and before

uploading the datasets, we alerted GEDmatch that we would be making the uploads, and we also

shared the kit numbers with them after we had completed our analyses.

Construction of artificial datasets
We constructed artificial ’target’ and ’bait’ kits using the SNPs included in the 23 and Me v4 chip.

(The ’target’ kits are the targets of inference, and the ’bait’ kits are designed to reveal their geno-

types). We identified the alleles at these SNP positions in the 1000Genomes dataset, along with their

frequencies in the EUR subset of 1000Genomes. We assigned as missing (‘- -’) any SNP that we could

not match by position in 1000Genomes. We chose four target SNPs at random on chromosome 22.

These SNPs were chosen at random from the set of strand-unambiguous polymorphisms, that is not

A/T and G/C SNPs. These strand-unambiguous sites include the majority of SNPs on the chip,

for example 89% of the SNPs on the 23andMe chip on chromosome 22.

Target genomes
We uploaded three artificial target genome kits (T1-T3). These vary in their genotypes at the target

SNPs. T1 and T3 are homozygous for different alleles; T2 is heterozygous. At the rest of the loci, we

constructed genotypes by randomly sampling alleles according to their frequencies at each SNP.

Thus, there is no LD among loci.

Bait genomes
We uploaded two artificial bait genome kits. These two kits have opposite-homozygote genotypes

at each of the target SNPs. The two bait uploads were then set to have identical genotypes in the

rest of their autosomes, with their genotypes specified as below.

To create a region around the target that would bait a phase-unaware method into calling IBD,

we took SNPs in the 0.6cM on either side of the target SNP, selected at random 22 on each side,

and set them to be heterozygous in both bait genomes. The rest of the SNPs within this bait region

were set to be missing. We used only 22 heterozygous SNPs on each side and filled in the rest with

missing data (rather than making all sites heterozygous) because large numbers of heterozygous

sites generated an error on upload, ‘HTZ string too long’ and would not be processed further. Block-

ing uploads with long runs of heterozygous sites is a countermeasure put in place by GEDmatch

after we and (Ney et al., 2020) initially alerted GEDmatch to the risks of upload-based privacy

attacks. However, we found that the countermeasure was not triggered by runs of heterozygous

sites with missing sites interspersed, and these runs of heterozygosity interspersed with missingness

also effectively baited GEDmatch into calling IBD segments. Additionally, we confirmed with Peter

Ney (personal communication) that his previously uploaded kits including long runs of heterozygosity

remain active even though re-uploads of those same kits are blocked as of December 3rd, 2019,

suggesting that the block applies only to newly uploaded kits and not to existing data on

GEDmatch.

The alleles in target kits at all other autosomal SNPs in the genome were drawn at random with

frequency 1� p, where p is the frequency in the 1000Genomes EUR subsample. This scheme was

chosen to ensure that the bait genomes were unlikely to have spurious IBS matches anywhere with

any target genome, so that the only potential IBS was in the target regions.
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Detailed results of baiting
We compared each target to both bait genomes using the 1-to-1 GEDmatch tool. We set the mini-

mum block to a length of > 0.7cM and 25 SNPs, with a mismatch cutoff of 25 SNPs. This ensured

that we could detect IBS in the key regions, but that a single opposite-homozygous mismatch would

be sufficient to prevent the identification of a putative IBS segment in the key region.

The baiting attempt was successful; we observed IBS only where we expected it between bait

and target kits (Figure 5). We observed no putative IBD segments on any chromosome except 22,

as expected on the basis of our procedure for filling in artificial genotypes in both sets of kits. The

details of the matches on chromosome 22 are reported in Table 3. We observed 4 putative IBD seg-

ments overlapping our target bait regions in the comparisons with matching homozygote genotypes

at the bait site, that is in the T1-B1 and T3-B2 comparisons, as well in both heterozygote-homozy-

gote comparisons, that is T2-B1 and T2-B2. We observed no putative IBD segments in the pairs with

opposite-homozygous mismatches, T1-B1 and T3-B2. Thus the genotypes of the targets are readily

discernable from from the putative IBD segments output by GEDmatch. The full results returned by

Table 3. Summary of the SNPs targeted by baiting and the IBS returned by GEDmatch.

For each region, we give the position of the key SNP (target bp). Because by design our bait kits are genetically identical outside of

the target SNPs, the IBS regions returned by GEDmatch’s 1-to-1 tool are identical across bait kits generating a match. For each pair-

wise comparison, we report the IBS information returned: Left-Right bp of the IBS region, the cM length, the number (#) of SNPs in the

IBS region with a non-missing target. We also report the number (#) of SNPs spanned by the region IBS when matched to the missing

target Bmiss.

Matching pairs Target 1 Target 2 Target 3 Target 4

target bp 27613130 34024097 37673781 42008068

T1-(B1 Bmiss)

IBS L bp 27427698 33771672 37519864 40054428

IBS R bp 27680780 34328741 37827711 43112674

IBS cM 1.3 0.8 1.1 1.2

# SNPs 47 45 42 40

# SNPs Bmiss 46 44 41 39

T2-(B1 B2 Bmiss)

IBS L bp 27433179 33771672 37508507 40357667

IBS R bp 27680780 34328741 37827711 43112674

IBS cM 1.3 0.8 1.2 0.9

# SNPs 45 45 45 32

# SNPs Bmiss 44 44 44 31

T3-(B3 Bmiss)

IBS L bp 27433179 33771672 37519864 40357667

IBS R bp 27680780 34328741 37827711 43112674

IBS cM 1.3 0.8 1.1 0.9

# SNPs 45 45 45 32

# SNPs Bmiss 44 44 41 31

Tmiss-(All Baits)

IBS L bp 27433179 33771672 37519864 40357667

IBS R bp 27680780 34328741 37827711 43112674

IBS cM 1.3 0.8 1.1 0.9

# SNPs 44 44 44 31

# SNPs Bmiss 44 44 44 31

The online version of this article includes the following source data for Table 3:

Source data 1. GEDmatch demonstration summary.
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GEDmatch are available as images here (https://github.com/mdedge/IBS_privacy/tree/master/IBS_

baiting_demo; the kit numbers are redacted to prevent reuse).

Some of the IBS blocks have fewer SNPs than we expect. We believe this to be due to the

removal of SNPs during the tokenization stage, during which rare SNPs and SNPs with stand-ambig-

uous alleles seem to be removed (Ney et al., 2020). We did not investigate this further, but multiple

uploads could be used to determine the approximate criteria for SNPs to be included, and hence

determine where an adversary should set cutoffs.

Our two bait kits could both generate IBS matches to the target because the target genotype is

missing rather than heterozygous. To determine whether a genotype was missing, we implemented

a trick borrowed from Ney et al. (2020), and uploaded a third bait kit (Bmiss) with the target SNP

set to missing (i.e. ‘- -’) and then looked at the number of SNPs an IBS match across the target site

spans. In each case, the non-missing baits (B1 and B2) generated an IBS block match with with T1-T3

that was one SNP longer than the IBS block generated by the Bmiss bait (Table 3). Comparing these

baits to a new target with a missing genotype at each target site (Tmiss), we see that in each pair-

wise comparison the IBS blocks are the same number of SNPs long regardless of whether the target

SNP bait genotype was missing (Table 3). Therefore, we can distinguish the target being heterozy-

gote or missing by the use of a third bait kit and inspection of the number of SNPs included in an

IBS match.

The possibility of IBS-baiting-like procedures also interacts with the vulnerabilities arising from

the presentation of SNP-level visualizations explored by Ney et al. (2020). Even if short IBS blocks

were not reported to the user explicitly, it is clear from the zoomed-in view that we can see the tar-

get mismatches in question (see Figure 5). One measure that GEDmatch appears to have taken

against a Ney et al. (2020)-style attack is to jitter the positions of SNPs in their visualization slightly.

However, an attacker could counter such jittering by embedding key sites in runs of heterozygosity,

making it easier to identify them in visualizations after jittering. Thus, the images displayed by GED-

match still pose additional security risks.
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Appendix 1

Detailed rationale for proposed countermeasures
Here, we detail the rationale and possible advantages and disadvantages of the

countermeasures listed in Table 2.

1. Require uploaded files to include cryptographic signatures identifying their source.
This recommendation was initially made by Erlich et al. (2018). Under this suggestion, DTC
genetics services would cryptographically sign the genetic data files they provide to users.
Upload services might then check for a signature from an approved DTC service on each
uploaded dataset, blocking datasets from upload otherwise. An alternative procedure that
would accomplish the same goal would be for the DTC entities to exchange data directly at
the user’s request (Ney et al., 2018). Such a procedure would allow upload services to
know the source of the files they analyze and to disallow uploaded datasets produced by
non-approved entities and user-modified datasets. All the methods we describe require the
upload of multiple genetic datasets. As such, requiring cryptographic signatures would
force the adversary to have multiple biological samples analyzed by a DTC service in order
to implement any of our procedures, and IBS probing and IBS baiting would require syn-
thetic samples, which are much harder to produce than fake datasets. Another benefit of
this approach is that it would protect research participants against being reidentified using
DTC genetic genealogy services (Erlich et al., 2018). A disadvantage of this strategy is that
it requires the cooperation of several distinct DTC services.

2. Restrict reporting of IBS to long segments.
Reporting short IBS segments increases the typical coverage of IBS tiling (Figure 2) and IBS
probing (Figure 3), as well as the efficiency of IBS baiting. Very short blocks may be of little
practical utility for genetic genealogy (Huff et al., 2011). Reporting only segments longer
than 8 cM would substantially limit IBS tiling attacks. A partially effective variant of this strat-
egy is to report short segments only for pairs of people who share at least one long seg-
ment (Figure 2—figure supplement 2). One disadvantage is that short segments, though
less reliably inferred than longer segments, may still be of interest to genealogists.

3. Do not report locations of IBS segments.
Another tactic for preventing IBS tiling is not to report chromosomal locations at all. If chro-
mosomal locations are not reported, IBS tiling as we have described it becomes impossible.

4. Block uploads of genomes with excessive homozygosity. IBS tiling is especially informative if
genotypes that are homozygous for phased haplotypes are uploaded, so blocking genomes
with excessive homozygosity presents a barrier to IBS tiling attacks. However, runs of homo-
zygosity occur naturally (Pemberton et al., 2012), and allowing for naturally occurring pat-
terns of homozygosity would leave a loophole for an adversary who could upload many
genotypes, using including homozygous regions and using only those for tiling.

5. Report only a small number of putative relatives per uploaded kit.
Reporting only the closest relatives (say the 50 - 100 closest relatives) of an uploaded kit
would decrease the efficiency of all the methods we describe here. Only a small number of
people could have their privacy compromised by each upload. This countermeasure comes
with costs to genealogists, who may want to explore as many matches as possible in order
to build family trees.

6. Disallow arbitrary matching between kits.
Some services allow searches for IBS between any pair of individuals in the database. Allow-
ing such searches makes all potential IBS attacks easier. This countermeasure might hamper
the investigations of genealogists exploring complex hypotheses about relatedness.

7. Block uploads of publicly available genomes.
There are now thousands of genomes available for public download, and these publicly
available genomes can be used for IBS tiling. Genetic genealogy databases could include
publicly available genomes (potentially without allowing them to be returned as IBS
matches for typical users) and flag accounts that upload them. This strategy would go some
distance toward blocking IBS tiling, but it could be thwarted in several ways, for example by
uploading genetic datasets produced by splicing together haplotypes from publicly avail-
able genomes.

8. Block uploads with evidence of IBS-inert segments.
IBS-inert segments—that is false genetic segments designed to be unlikely to be IBS with
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anyone in the database—are key to IBS probing. Some methods for constructing IBS-inert
segments are easy to identify, but others may not be. If a database is large enough,
genomes with IBS-inert segments could be identified by looking for genomes that have
much less apparent IBS with other database members than might be expected.

9. Block uploads with long runs of heterozygosity.
Long runs of heterozygosity do not arise naturally but are key to the IBS baiting approaches
we describe here. Blocking genomes with long runs of heterozygosity—or alternatively,
blocking genomes that have much more apparent IBS with a range of other database mem-
bers than expected—would hamper IBS baiting. However, this countermeasure might be
hard to apply to a small-scale IBS baiting attack, where only one or a few short runs of het-
erozygosity might be necessary. In our sample, the longest run of heterozygosity (in terms
of number of SNPs) consisted of 38 SNPs and spanned .06 cM. This suggests that filtering
out long runs of heterozygosity might be a promising strategy, though identifying a specific
procedure would require more careful consideration of variation in non-European popula-
tions and of the composition of commercial SNP chips (including SNP density and allele
frequencies).

10. Use phase-aware methods for IBS detection.
Although calling IBS by looking for long segments without incompatible homozygous geno-
types scales well to large datasets, such methods are easy to trick, allowing IBS baiting
approaches. In addition to allowing IBS estimation methods that are harder to trick, faked
samples may stand out as unusual during the process of phasing, raising more opportunities
for quality-control checks.
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